
DOI 10.1140/epja/i2001-10123-2

Eur. Phys. J. A 14, 239–245 (2002) THE EUROPEAN
PHYSICAL JOURNAL A
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Abstract. The ∆-resonance contribution has been included in the (e, e′p) reaction along with Coulomb
distortion effects. We treat the resonance via a non-relativistic ∆ current operator and use a Dirac Hartree
single-particle model for the ground-state single-particle wave function and a relativistic optical model for
the knocked-out proton wave function. It is assumed that the π-meson created by the virtual photon is
absorbed in the target nucleus following the production of a ∆-resonance. Our DWBA calculation shows
that the ∆-resonance contribution to the (e, e′p) reaction cross-section is 10–15% for an energy of 250 MeV
transfered to the proton knocked out of the s-shell of 40Ca, in the parallel and perpendicular kinematics.

PACS. 24.90.+d Other topics in nuclear reactions: general – 25.30.-c Lepton-induced reactions

1 Introduction

Electron scattering has been used as a useful tool for the
study of nuclear structures and their properties. Since in-
clusive (e, e′) experiments provide information only about
the general nuclear structure, exclusive (e, e′p) experi-
ments have been done recently to obtain a clue regard-
ing which orbitals of the target nucleus participate in the
reaction. It means that one can study the single-particle
motion inside the nucleus and test different nuclear mod-
els for nuclear wave functions, in particular, independent
particle models.

For instance, one can extract spectral functions for a
given shell in the target nucleus with respect to the mo-
mentum transfer and the energy transfer. The structure
functions give us information about the nucleons in the nu-
cleus through a comparison with experimental data. The
comparison, however, needs a scale factor called a spec-
troscopic factor, which stands for an occupation number
related to the probability of removing a nucleon at a given
shell state. In the simplest independent particle model the
value of the factor is 0 or 1.

Actually, the value deduced in such a way deviates
from its 0 or 1 for a given nuclear model because the resid-
ual interactions exist after the conversion of the nucleon-
nucleon interactions into a mean-field potential. There-
fore, a precise estimate of the spectroscopic factor is desir-
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able to test the characteristics of the given nuclear model.
But there are still many ambiguities to be pinned down be-
fore conclusions for the spectroscopic values can be drawn
due to several effects, such as medium effect, current oper-
ators, and so on [1,2]. The effect of the two-body current
studied in this paper is one of the sources of ambiguities.

Using these exclusive (e, e′p) and inclusive (e, e′) re-
actions, many previous papers [3–11] have reported on
interesting results, particularly in the dip region located
between the quasi-elastic and the ∆ production peaks.
In this region, the one-body process which governs the
quasi-elastic region does not dominate the cross-section.
For instance, it accounts for only 20–30% of the experi-
mental (e, e′) cross-section in 12C at a momentum transfer
of q = 400 MeV/c and energy transfer of ω = 200 MeV [9].

Therefore, the two-body process, in particular, medi-
ated by internal pions, becomes competiting with the one-
body process in the dip region. This region, thus, could
be a desirable one for the investigation of the two-body
process effects. The pion exchange current contributes to
these reactions through the propagation of the nucleon
(regular pion exchange) and the ∆-resonance inside nu-
cleus. The ∆-resonance contribution, which has been stud-
ied by many authors, is thought to be significant in the
(e, e′p) reaction. The regular pion exchange has been also
investigated extensively as a possible contribution of me-
son exchange current (MEC) in the electron scattering.
Most of the calculations were based on the impulse ap-
proximation (IA) with additional contributions, such as
the above regular pion exchange and the∆-resonance. The
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IA has three important ingredients, wave functions for ini-
tial and final nuclei, electro-magnetic current operators,
and final-state interactions due to the Coulomb and the
strong interactions. Since the wave functions exploited in
the IA are usually constructed from independent particle
models, they do not contain the pion and the ∆-resonance
as degrees of freedom. Therefore, in the framework of the
IA one needs to explicitly take the contributions of the
regular pion exchange and the ∆-resonance currents into
account.

For example, the Gent group in Belgium [2,12,13] took
a non-relativistic model for the (e, e′p) reaction. Their cal-
culation, based on the Hartree-Fock (HF) approach, made
use of the random phase approximation (RPA) with the
two-body current and made comparison with the experi-
mental data from NIKHEF [14]. They included the elec-
tron Coulomb distortion by using the effective momen-
tum approximation (EMA). The RPA among these ef-
fects makes a considerable contribution to the reduced
cross-section at high missing momentum. But, the elec-
tron Coulomb effect was comparable to that of the two-
body current. Many effects like particle-hole interactions
in RPA, the two-body process effects due to the pion ex-
change, such as the MEC and the ∆-resonance current,
the final-state interactions, and so on are equally impor-
tant. In particular, the ∆ plays an important role in the
transverse nuclear response.

On the other hand, in the quasi-elastic region, many
theoretical calculations [15–22] of the (e, e′p) reaction have
been carried out in the framework of the distorted-wave
Born approximation (DWBA) exploiting a relativistic op-
tical model for the outgoing proton and a relativistic
Dirac-Hartree single-particle model for the target nucleus
in the presence of the electron Coulomb distortion. If we
note that these models rely on the relativistic mean-field
theories and these theories contain the mesons as the fun-
damental building blocks, the DWBA for these reactions
does not necessarily need to consider the regular pion ex-
change contribution. But the ∆-resonance should be ex-
plicitly included in the two-body process because the reso-
nance was not included in the construction of the relevant
wave functions. In these calculations, it turns out that the
Coulomb distortion plays non-negligible roles even with-
out the ∆-resonance. The Coulomb distortion effects are
of the order of 30% of the cross-section for 208Pb, so in
the dip region the effects should be distinguished in order
to investigate the two-body process effects.

In this paper we add the ∆ part of the two-body cur-
rent to the relativistic single-particle model in the dip re-
gion where one expects larger contributions than in the
quasi-elastic peak. That is, we extend our previous cal-
culations [18,20] by adding a non-relativistic ∆ current
operator and investigate explicitly the contribution of the
∆(1232) current to the (e, e′p) reaction cross-section in the
dip region, and we also include electron Coulomb distor-
tion effects. In sect. 2, we briefly introduce the two-body
current operator and apply it to the (e, e′p) reaction by
using the Dirac-Hartree single-particle wave function [23]
for the bound state and the relativistic optical model [24]

for the proton knocked out. In sect. 3, we calculate the
contribution of the ∆(1232) current for the 2s1/2, 1d3/2,
and 1d5/2 shells of 40Ca. Conclusions are given in sect. 4.

2 Theoretical formalism

In the plane-wave Born approximation (PWBA), the
cross-section for the exclusive (e, e′p) reaction with a po-
larized incident electron beam can be written as

d3σ

dEfdΩfdΩp
=

pEp
(2π)3

σM[vLRL + vTRT + cos 2φpvTTRTT

+ cosφpvLTRLT + hsinφpvLT′RLT′ ] , (1)

where σM is the Mott cross-section and RL, RT,
RTT, RLT, and RLT′ are the longitudinal, transverse,
transverse-transverse, longitudinal-transverse, and polar-
ized longitudinal-transverse structure functions, respec-
tively. The factors vL, vT, etc. depend on the electron
kinematics [18]. Ef and Ωf are the energy and the solid
angle of the final electron, φp is the azimuthal angle of
the outgoing proton measured with respect to the elec-
tron scattering plane, and h is the helicity of the initial
electron. The momentum and the energy of the outgoing
proton are p and Ep. In the full DWBA calculation by us-
ing a partial-wave expansion, it is not possible to separate
the cross-section into a sum of bilinear products of the
electron kinematics and the outgoing proton’s azimuthal
angle [16]. According to ref. [18], however, it is possible to
treat the Coulomb distortion in an approximate way that
not only has very good agreement with the full DWBA
calculations, but also allows the separation of the cross-
section into terms containing structure functions [21,22]
which are closely related to the plane-wave structure func-
tions. For this calculation we use the approximate method
of including Coulomb distortion which is a very close ap-
proximation to the full DWBA result.

In order to calculate the contribution of the ∆-
resonance to the dip region, we use the non-relativistic
∆(1232) current operator [13] given by

Ĵ
(2)
∆, non-rel.(q, k1, k2) =

2ifγN∆fπN∆fπNN
9m3

π(M∆ −MN − ω − i
2Γ∆)

×

{[
− (τ 1×τ 2)z

(σ2·k2)
k2

2 +m2
π

(σ1×k2)×q

+ 4(τ 2)z
(σ2·k2)
k2

2 +m2
π

(k2×q)
]

+ [1←→2]

}
, (2)

where the ∆ width Γ∆(ω) was extracted from the formula
given by Oset et al. [25]. The values of the coupling con-
stants are f2

γN∆ = 0.014, f
2
πN∆

4π = 0.37, and f2
πNN

4π = 0.079.
The ∆- and π-meson form factors are given by the follow-
ing forms [26]:

FγN∆ =
1(

1− k2
µ

707000

)2 , FπN∆ =
1(

1− k2
µ

690000

)2 ,
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where k2
µ is in units of MeV2. For the πNN form factor, a

monopole form (Λ2
π−m2

π)/(Λ2
π−kµ

2) with Λπ = 1200 MeV
is taken. k1 and k2 are the momenta transferred through
the pion to nucleons 1 and 2, respectively. We briefly re-
peat an explanation of each term in eq. (2) [27]. The first
bracket corresponds to the case where the photon interacts
with nucleon 1 followed by ∆ propagation which decays
into the outgoing proton and an internal pion absorbed
by nucleon 2. The first term in the bracket corresponds
to a spin-flip of nucleon 1. The second corresponds to the
non-spin-flip reaction and dominates over the first term
due to the factor 4. Moreover, if we consider isospin, the
first term survives only for the case of charged-pion ex-
change between the nucleons, while the second term al-
lows for π0 exchange. Therefore, the π0 exchange in the
∆-resonance channel has a comparable contribution to the
charged-pion exchange in this (e, e′p) reaction, although it
has a smaller ∆ decay cross-section than the charged-pion
decay. The second bracket stems from the interchange of
nucleons 1 and 2, i.e., the virtual photon forms a ∆ on
nucleon 2 followed by π+ exchange between the relevant
nucleons if the nucleon 1 is knocked out.

To apply the two-body current to the one-body cur-
rent, we make the following assumptions: 1) the virtual
photon emitted by the electron is absorbed by a single
nucleon, 2) π0 and π± mesons are exchanged consistently
with charge conservation. Furthermore, when the pion is
absorbed by the proton, we use momentum conservation
at each vertex.

The one-body current is written as

J
µ(1)
N (r) = 〈A− 1, p|Ĵµ(1)(q)|A− 1, b〉 =

eΨ̄p(r)Ĵµ(1)(q)Ψb(r) . (3)

The Ĵ
µ(1)
N (q) is the one-body nucleon current operator

given by

Ĵ
µ(1)
N (q) = F1γ

µ +
iµT

2MN
F2σ

µνqν , (4)

where µT denotes the nucleon anomalous magnetic mo-
ment and F1 and F2 stand for the nucleon form factors
which are function s of the four-momentum transfer.

The ∆-resonance is formed mainly by the p-wave pho-
ton as is well known in the M1+(3/2) amplitude for pion
photoproduction. Consequently, one can expect that the
proton knocked out from the s1/2 state is affected more
by the ∆ excitation mechanism than protons from the
d states.

Within the DWBA scheme, the outgoing-nucleon wave
function Ψp(r) and the bound-state nucleon wave function
Ψb(r) are obtained in a relativistic optical model and a rel-
ativistic Dirac-Hartree single-particle model, respectively.
The outgoing-nucleon wave function is given by

Ψp(r) =
∑
κpµp

Cκpµpe
−iδκpψµpκp (r) , (5)

where ψµpκp (r) and Cκpµp are given by

ψµpκp (r) =

(
fκp(r)χµpκp (r̂)
gκp(r)χµp−κp(r̂)

)
,

and

Cκpµp =

√
Ep +M

2Ep
4π(i)`pC`p

1
2 jp

µp−s s µpY
µp−s
`p

∗
(p̂) ,

in which f(r) and g(r) are obtained by solving numer-
ically coupled Dirac radial equations. χµpκp (r̂) is the spin
angle function [28]. The bound-state wave function has
a structure similar to the above outgoing nucleon, but it
does not contain an imaginary part.

On the other hand, the two-body current is calculated
in the following way:

J
µ(2)
∆ (r) = 〈A− 2, p, b2′|Ĵ∆

µ(2)
(q)|A− 2, b, b2〉 =

e

∫
dr′

∫ kF

0

dki A[Ψ̄p(r)Ψ̄b2′(r′)]

× Ĵµ(2)
∆ (q,ki) A[Ψb2(r′)Ψb(r)] , (6)

where A stands for the anti-symmetrization and kF de-
notes the Fermi momentum. Ψp(r) and Ψb(r) are the same
wave functions as in eq. (3) and Ψb2′(r′) and Ψb2(r′) are
undetected particles inside the target nucleus.

As for the bound-state wave functions, Ψb2(r′) and
Ψb2′(r′), we exploit the plane-wave–like form. Using this
analytical form is an effective method to describe the
Coulomb distorted Dirac particle in the electron scatter-
ing [18,19]. Namely, the comparison of this analytic form
to the exact fully distorted wave in the case of the electron
scattering does not give any discernible difference in the
results. Of course, in case of the nucleon, this form could
be questioned because the nucleon inside the nucleus is
in the additional vector and scalar potentials due to the
strong interactions. But, in this paper, we assume that it
is still valid even in the strong interactions. Otherwise, we
could not use the momentum conservation in the 3-point
vertex of the internal pion and the nucleons. It leads to
a formidable task of incorporation of the ∆-resonance in
the DWBA method.

Exploiting the momentum conservation at the pion
vertex and the orthogonality of the bound wave functions,
we can simply integrate over r′ and obtain

J
µ(2)
∆ (r) = eR(r)

∫ kF

0

dki [ūpūb2′ ] Ĵ
µ(2)
∆ (q,ki) [ub2ub] ,

(7)
where R(r) is a remaining radial integration part and
Ĵ
µ(2)
∆ is a still fully relativistic ∆ current. After this ma-

nipulation, we reduce it to a non-relativistic form of eq. (2)
using the static approximation for the Ĵµ(2)

∆ by decompos-
ing the Dirac spinors into the 2-component Pauli spinors
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as follows [11]:

J
µ(2)
∆ (r) = eR(r)

∫ kF

0

dki [χ̄p(r̂)χ̄b2′(ki)]

× Ĵµ(2)
∆, non-rel.(q,ki) [χb2(ki)χb(r̂)] . (8)

We apply this current form to the final continuum state
and the bound wave function to calculate the cross-
section. Since the π0 and π± mesons are exchanged inside
the target nucleus, the momenta k1 and k2 in eq. (2) are
assumed to remain inside the Fermi sphere. Note that the
detected final proton is treated by a continuum wave func-
tion obtained from the relativistic optical model, while the
bound state is described by the single-particle wave func-
tion. Thus, the final-state interaction is automatically in-
cluded in this treatment.

The total nuclear current can be written as

Jµ = J
µ(1)
N + J

µ(2)
∆ , (9)

where Jµ(1)
N is the nuclear current obtained by ref. [18] and

J
µ(2)
∆ is the ∆-resonance current. The non-relativistic ∆

current is purely transverse, and then it is trivial to obtain
qµJ

µ(2)
∆ = 0. But the one-body current is not conserved

and the orthogonality may be violated in the (e, e′p) pro-
cess, because we choose the relativistic Hartree single-
particle model for the bound state and the relativistic op-
tical model for the outgoing nucleon. Up to now, there
is no more convenient way to describe this knocking-out
process. For these reasons, we choose the Coulomb gauge,
which is commonly used, to conserve the one-body cur-
rent, and finally we obtain qµJ

µ = 0.
In the case of the impulse approximation, the meson

exchange currents need to be included if the wave func-
tions for the nucleus are constructed in the framework of
the independent particle model. However, as already men-
tioned, we use a relativistic Dirac-Hartree single-particle
model for the target nucleus. In particular, our scalar and
vector potentials for the bound-state wave functions, Ψb(r)
in eq. (3), are obtained from the relativistic σ-ω model of
Horowitz and Serot [23]. In this model, the mesons are in-
cluded explicitly as degrees of freedom with the nucleons,
so we did not include the meson in the two-body current.
The ∆-resonance, however, is not included in our relativis-
tic model for the nucleus. Therefore, we explicitly include
the ∆-resonance in our two-body currents.

3 Results

In this analysis, we try to calculate the reduced cross-
section arising from knocking out a proton from a given
shell. This cross-section is related to the probability that
a proton in the shell is carrying the missing momentum
defined by pm = p− q. The reduced cross-section is gen-
erally defined by

ρ(pm) =
1

pEpσep

d3σ

dEfdΩfdΩp
. (10)

Fig. 1. The reduced cross-sections for knocking out protons
from the 2s1/2-shell of 40Ca in the parallel kinematics. The
kinematics are Ei = 500 MeV with energy transfer ω = 250
MeV. The dotted and dashed curves show the DWBA results
without and with the ∆(1232) contribution, respectively. The
dash-dotted and solid curves show the PWBA results without
and with the ∆(1232), respectively.

Fig. 2. The same as fig. 1 but with the perpendicular kine-
matics.

The off-shell electron-proton cross-section σep is not
uniquely defined, but we use the form σcc1ep given by de
Forest [29] in all the calculations. There are two kine-
matical situations commonly used in (e, e′p) experiments.
They are the parallel kinematics in which the outgoing-
proton momentum p is along the momentum transfer q
and the perpendicular kinematics where the detected pro-
ton makes an angle with respect to the momentum trans-
fer q. Here, the electron energy transfer and the direc-
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Fig. 3. The same as fig. 1 but for the 1d3/2-shell.

Fig. 4. The same as fig. 2 but for the 1d3/2-shell.

tion of q are fixed. In both kinematics the magnitude of
p, the outgoing-proton momentum, is normally held at a
constant value. All the calculations are carried out in the
laboratory frame (target fixed frame).

In figs. 1-6, we show six results for the contribution
of the ∆(1232)-resonance to the proton knocked out of
the 2s1/2, the 1d3/2, and the 1d5/2 shells of 40Ca in both
the parallel and perpendicular kinematics. The incoming-
electron energy and the energy transfer are Ei = 500 MeV
and ω = 250 MeV, respectively, in all the cases. Notice
that the momentum transfer in the perpendicular kine-
matics is |p| = |q| = 718.1 MeV/c and the scattering
angle θe = 144.3◦ over the whole ω region. In all figures,
the dotted lines are DWBA results without the ∆ contri-
bution, while the dashed lines show DWBA results with
the inclusion of the ∆ contribution. The dash-dotted lines

Fig. 5. The same as fig. 1 but for the 1d5/2-shell.

Fig. 6. The same as fig. 2 but for the 1d5/2-shell.

and the solid lines denote the PWBA results without and
with the ∆ contribution, respectively, and can be com-
pared to the dotted and dashed lines to see the effects of
electron Coulomb distortion.

As shown in figs. 1 and 2, in the DWBA calculation
the contributions of the ∆ are about 10% in the parallel
kinematics and about 3% in the perpendicular kinemat-
ics for the case of the proton knocked out of the 2s1/2

orbit around the first peak. As is seen in figs. 3 and 4,
however, the effect on the 1d3/2 orbit is about 3% in the
parallel kinematics and 4% on the left and right peak po-
sitions in the perpendicular kinematics. In addition, figs. 5
and 6 show that the effects of the ∆ on the 1d5/2 orbit
are around 10% in the parallel kinematics and around 5%
on the left peak and 10% on the right peak in the per-
pendicular kinematics. The ∆ effect on the 2s1/2 orbit for
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both the parallel and perpendicular kinematics does not
affect the positions of maxima and minima. The ∆ effect
on the 1d3/2 and 1d5/2 orbits for both kinematics produces
only a small amount of shift. In the parallel kinematics,
the contribution of the ∆ increases with higher missing
momentum |pm| (small momentum transfer |q| as can be
seen in eq. (2)). In the perpendicular kinematics where the
momentum transfer is fixed, the role of the ∆ becomes
more important with higher missing momentum. In the
PWBA calculations, the role of the ∆ on the 2s1/2 orbit
has similar effects as in the DWBA calculations. But the
∆ contribution to the d orbits appears different from that
to the s orbit, which means the electron Coulomb distor-
tion affects the ∆ current although the distortion is not
large in the dip region. In particular, the effect of the elec-
tron Coulomb distortion on the 1d orbits is smaller than
that on the 2s orbit at the pm > 0 maximum positions.

From these results we see that although the effect on
the d orbits looks more significant, the ∆ contribution to
the 2s1/2 orbit is actually larger in magnitude (see the
scale of the y-axis in the figures). The reason may be
related to the following: The relative angular momenta
needed between the virtual photon and the bound nucle-
ons are 1 and 0 for 2s1/2 and 1d3/2, respectively, to form
the propagating ∆ since the total angular momentum of
the ∆ is 3/2 and the ∆ contribution arises mainly from
l = 1. Therefore, the∆ contribution is larger for the s-shell
than for the d-shell. Note that the ratio of the ∆ contri-
bution to the 1d2/5 orbit is also as important as that to
the 2s1/2 orbit.

Although we have not examined more deeply bound or-
bits, we may deduce that the contribution of the ∆(1232)
for inner orbits is larger than for outer orbits, since the
nuclear density is larger deep inside the nucleus. Thus, if
one consider all the nucleons, the total contribution of the
∆ via this process may be somewhat larger than 10%–
15%. This process, together with other processes where
the pions exit the nucleus, will contribute to the (e, e′)
cross-section by about 20% in this kinematics range. Fur-
thermore, in the dip region, we find that the effect of elec-
tron Coulomb distortion is about 7% for 40Ca on each
orbit in both kinematics consistently with ref. [30].

4 Conclusion

In summary, we have included the ∆-resonance contribu-
tion to the reduced cross-section for the reaction (e, e′p)
around the dip region (ω = 250 MeV) as a function of the
missing momentum. We have examined the cases in which
the proton is knocked out from different shells. In the dip
region, the ∆ effects are considerably increased for higher
missing momentum pm and are almost 10% around the
first peak in both kinematics for a proton knocked out of
the 2s1/2 orbit. The size of the ∆ effects on the first peak
is only 3–5% for protons knocked out of the 1d3/2 orbit
and about 10% for protons from the 1d5/2 orbit in 40Ca.
The reason why the ∆ contribution in the s-shell is larger
than in the d-shells depends on the relative momenta be-
tween the virtual photon and the bound nucleons. The

size of the ∆ contribution to the (e, e′p), especially in
the parallel kinematics, depends on the momentum trans-
fer at a given initial electron energy and becomes larger
with higher missing momentum. The effects of the elec-
tron Coulomb distortion for 40Ca are comparable to the
effects of the ∆ current for these kinematics.

In conclusion our present calculations in the dip region
show the possibility to treat the two-body current opera-
tor in a single-particle model in a simple way and thereby
add it to the single-body current for the (e, e′p) reaction.
Our calculation includes electron Coulomb distortion and
the final-state interaction of the outgoing proton. We find
a relatively large ∆ contribution to the (e, e′p) reaction in
the dip region. We believe this approach will be useful in
analyzing (e, e′p) experiments in the dip region and that
it can be extended to the analysis of (e, e′) reactions.

This work was supported by the Korea Research Foundation
Grant KRF-2001-015-DP0103.
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